


What will we cover?

- Classes of Porous Materials

- MOFs and why they are Special
- Synthesis

= Building Blocks

- Most well-known Frameworks

- Post-synthetic Modification

=Pl



History of porous materials

Gases and chemicals

Activated Carbon

Heat

1500 BC — medicinal use
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Micelle formation:
aqueous mean, pH
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1970s — first patent '®) OO
1997- wave of reports oO
4.6 - 30 nm pore size
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o Micelle organization: u ~:‘.’: D g}
https://atlascarbonllc.com/ac/history/Lite  arrangement \J TE zeolite A(42A)  zeoliteY (7.4A) ZeoliteL(7.1 A)  ZSM-5 (5.6 A)

arrangement

0.D. Velev et all, Nature 389, 447-448 P°“1’7”6'5‘“ boiling stone, 1862 — synthesis
C.T. Kresge et all, Nature 359, 710-712

Sigmund M. Csicery, Zeolites, 4,202-213 1950 - Union Carbide — sol gel synthesis
Veronique Van Speybrock, Chem. Soc. Rev. 44,7044-7111  Microporous <2nm. Mesoporous 2-50nm Macroporous > 50 nm
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What is a MOF?

MOFs offer a modular design and unprecedented chemical tunability!

..
Metal-ions or
metal-ion clusters -

Organic ligands

3-D MOF Structure



MOFs
What are they?
Why are they special?
How are they made?
How can you increase stability?
What can they be used for?



Why are MOFs special?
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MOF Properties:

Nano sized channels that connect in
1-, 2-, and 3- Dimensions

High Surface Areas

Chemically Tunable
-Tunable Pore size and shape
-Tunable Properties

Pore sizes 0.5—10 nm

Li, et al, Nature 1999, 402, 276.
Rosi, et al Science. 2003, 300(5622), 1127.
Farha, et al J. Am. Chem. Soc.,2012,134(36), 15016.

Surface areas up to 7800 m2/g, a world record = 1 football field



Metal-Organic Frameworks

“Reticular chemistry, the chemistry of linking molecular building blocks by strong bonds to make crystalline
open frameworks, has significantly expanded the scope of chemical compounds and the useful materials”

Yaghi and Li, “Hydrothermal synthesis of a metal-organic framework containing large
rectangular channels” J. Am. Chem. Soc. 1995, 117, 10401. /
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General Synthesis

» Conventional Hydrothermal or
Solvothermal Synthesis

Alternatives:

» lonothermal
— Low-Vapor pressure
— Templating effect

» Microwave
— Shorter reaction times (minutes)
— More uniform heating profiles
— Different reaction kinetics

High Throughput Methodologies:

» Reproducibility
» Explore multi parameter space

Scale-up

Spray Drying (8.4 g / hr)
Ball milling ,
Continuous Flow (up to 20 g/ hr) - Soc.. 2011, 133, 12926.
Microwave Synthesis A
Batch reactors High-throughput PXRD 9
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First generation linkers

Ligands

Porphyrin linkers
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AlKabbi et al, Chem, 2016, 1, 186.

Dong-Ying Du et all, Chem. Soc. Rev. 43, 4615-4632
Kristina Konstas et all, J. Mater. Chem. 22, 16698
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M2(CO2)4
Zn4O(CO2)e M30(CO2)s (M = Cu, Zn, Fe, ZrgO4(OH)4- Zrg0g(CO2)s , .
(M =2Zn, Cr, Mo, Cr, Co, and (CO2)12 Y
In, and Ga) Ru) =~ L
23
M303(CO2)3 Al(OH)(COg2)2
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Hiroyasu Furukawa et al., Science, 341 120444.
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Metal-organic Polyhedra

Li, Zhu, Nature Chemistry, 2010, 2, 893. ¢ *



Most common structures



Bipyridine based MOFs

SALEM-5 SALEM-6 SALEM-7 SALEM-8

OH

dped tmbbp nbp tmbebp

Christoph Janiak et al, New J. Chem, 34, 2366-2388
Pravas Deria et al, Chem. Soc. Rev., 43, 5896 14



MOF-74 structure

M,(dobdc), M=Mg, Mn, Fe, Ni, Zn

Alternatively known as MOF-74 or
» CPO-27-M

Rosi, Kim, Eddaoudi, Chen, O’Keeffe, Yaghi, J. Am. Chem. Soc., 2005, 127, 1504. 15
Dietzel, Morita, Blom, Fjellvag, Angew. Chem., Int. Ed., 2005, 44, 6354.
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Deng et al. Science 336, (6084) 1018.



UlO-66 and analogs

UiO-66 (Universitetet i Oslo)

HO

COOH

DMF

+ 2Cly ——*>

‘ 120 °C

COOH
BPDC

COOH

DMF
O # ZCly ———>
120°C

COOH
TPDC

Chenghong Wang et all, Scientific Reports, 2015, 5 16613
Sergio J. Garibay et all, Chem. Commun. 2010, 46, 7700-7702
Min Kim et all, CrystEngComm, 14, 4096-4104

(BFa Uat

Crystal system: ?
Space group: Fm-3m
a=20.7465 A

V =8929.65 A3

[ZrgO04(0OH),]

'ZHZO = Zr606(C02)12
Special Attributes

» Cheap (based on Zr4+ and
terephthalic acid)

»  High porosity

»  High thermal stability

»  High stability to hydrolysis
»  Easy to synthesize

»  Extremely versatile 17




UlO-66 analogs
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Furukawa, et al J. Am. Chem. Soc., 2014, 136, 4369.



HKUST-1, Cu-BTC, Basolite C300

HKUST-1 (Hong Kong University of Science and Technology)

M = Cr, Fe, Ni, Cu, Mo T
Fm3m a =26.2243(5)

Williams et all, Science, 283, 1148-1150 -(l fl-

Gregory W. Peterson et all, Ind. Eng. Chem. Res., 54, 3626-3633 ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE



MIL-100 (Fe-BTC) and MIL-101 (Fe-BDC)

M3+

M = Fe, Al, Cr

Gerald Ferey et all, Science, 309, 2040-2042 -( Pf (-
Patricia Horcajada et all, Chem. Commun. 2820-2822

. . _ ECOLE POLYTECHNIQUE
Amarajothu Dhakshinamoorthy et all, ACS Catal., 2, 2060-2065 FEDERALE DE LAUSANNE



Tetracarboxylates

Tetracarboxylates
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Yong yan et all, J. Am. Chem. Soc, 138, 3371-3381
Libo Sun et all, Inorg. Chem. Front., 1,478

A. V. Vinogradov, Dalton Trans., 45, 7244
Hong-Mei Zhang et all, CrystEngComm, 17, 3181
Wen-Jing Yu et all, CrystEngComm, 15, 7732
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Hexacarbolyates

M-TDPAT framework

<
NU-109 NU-110
7010 m?/g 7140 m?/g
3.75cc/g & 4.4 cc/g
¢®
[

Open M?*site
M = Co, Ni, Cu, Zn, and Cd

2000 m?/g

v\@
P

Farha, et al Nature Chemistry,2010, 2, 944
22

Hauhan Wu et al, J. Phys. Chem. C, 116, 16609-16618
Baiyan Li et al, Angew. Chem. Int. Ed., 51, 1412-1415



COzH HOLC,
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Florian Moreau et al, PNAS, 2017, 114, 3056-3061
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Zeolitic imidazolate Frameworks




Zeolitic imidazolate Frameworks
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Kyo Sung Park et all, PNAS, 103, 10186-10191 .
Xiao-Chun Huang, Angew. Chem. Int. Ed., 45, 1557-1559 ZIF-8 cage diameter = 11.4 -
Rahul Banerjee, Science, 319, 939-943



Varying topology in ZIFs

pore
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C. Giictiyener et al. J. Am. Chem. Soc. 2010, 132, 17704. sod

W. Morris et al. J. Phys. Chem. C 2012; 116, 24084.



Post-Synthetic Modification
How many ways can we think of to change their
properties?



Post-Synthetic Metalation and ligand exchange
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Zr,0,(OH) (bpydc),(Cr(CO),),
space group: Fm3m space group: Pa3

Miguel 1. Gonzalez et all, Inorg. Chem. 54, 2995-3005
Xinle Li et all, ACS Catal., 6, 6324-6328 28
Honghan Fei et all, Chem. Commun, 50, 4810



Modification methods
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Tanabe et al, Chem. Soc. Rev., 40, 498-519 29



Post-synthetic appendage to open metals

O - HN < ~NH,

=
Toluene, A

Thomas M. McDonald et all, J. Am. Chem. Soc., 134, 7056-7065
Thomas M. McDonald et all, Nature, 519, 303-308
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Post-synthetic metal exchange

-

Broek, Dinca, J. Am. Chem. Soc., 2013, 135 (34), 12886.
Brozek, Dinca, Chem. Sci., 2012,3, 2110. 31



Post-synthetic polymerization
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UC Berkeley, January 20, 2023

Post-synthetic polymerization

1) In-situ polymerization 2) PolyMOF formation

A =

MOF

@ Metal ions or cluster

— Ligand

3) Post-synthetic covalent grafting 4) Post-synthetic introduction of polymers

Mechanical stability

Chemical stability

MOF Improvements
g! % 1.
. Conductivity

5) MOF formation around polymers
° \ R
® () -_—

©® N @ oA w N

Control dispersion

Control assembly

Enhance performance

Introduce non-native functionality

Shaping MOFs

Yang, Karve, Justin, Kochetygov, Espin, Asgari, Trukhina, Sun, Peng, Queen, Coord. Chem. Rev. 2021, 427, 213525.

Uemura, Kitagawa, Horike, Kawamura, Kitagawa, Mizuno, Endo, Chem. Commun. 2005, 5968.

Uemura, Yanai, Watanabe, Tanaka, Numaguchi, Miyahara, Ohta, Nagaoka, Kitagawa, Nat. Commun. 2010 1, 83 .

Zhang, Nguyen, Miller, Cohen, Angew. Chem. Int. Ed., 2015, 54, 6152.
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